**Required math: calculus **

**Required physics: none**

Reference: Griffiths, David J. (2005), Introduction to Quantum Mechanics, 2nd Edition; Pearson Education – Problem 2.24.

One of the weirder bits of mathematics that the physics student will encounter is the Dirac delta function . In one dimension, the ‘function’ (technically it’s really not a function at all, but a distribution) can be defined by saying for all but at . However, this definition isn’t very satisfactory, and in fact doesn’t define uniquely. It is better to define it using two conditions:

It is the integral condition which pins the delta function down uniquely.

For those that like to visualize functions, the delta function can be thought of as a limit of a series of rectangular functions. If we define a rectangular function of width and height (so its area is 1) centred horizontally on the -axis and sitting with its base on the -axis, then we can visualize the delta function as the limit of this rectangle as . As gets larger, the rectangle gets taller and thinner, and in the limit it is an infinitely high spike with only an infinitesimal width, but with an area always equal to 1.

One consequence of the delta function being zero everywhere except at is that if we multiply it by any function, it doesn’t matter what that function’s values are except at . That is, we can say

In terms of integrals, this means that

using the second defining property of above. The effect of integrating a function multiplied by the delta function is to pick out the function’s value at .

It is easy enough to move the location of the delta function’s spike. If we want the spike to appear at we can use the function , since the spike occurs when the delta function’s argument is zero, that is, at . Thus we can generalize the integral formula above to

One of the trickier formulas that causes some consternation amongst physics students is this formula:

where is a non-zero constant.

Before we discuss what this means, we can run through the proof. Since the main use of delta functions is in integration, we can consider this formula in light of the integration condition. Suppose we define the variable transformation . Then . We’ll take first:

This is the same result as what we would get if we evaluated:

so it seems reasonable to take in this case.

If then the derivation is the same except that making the variable substitution inverts the limits of integration, so we get

Therefore, saying covers both cases.

Now the problem many people have with this formula is this: if the definition of is that it is zero everywhere, but infinite when , then since the same can be said of , why can’t we just say ?

The reason arises in the ambiguity of this non-integral definition of the delta function that I mentioned at the start. There are many ways we can define a function that is zero everywhere but infinite at . Look at it this way. Instead of using the limit of the sequence of rectangles that I did at the start, suppose we use a sequence of rectangles of width and height , so that their areas are all . Now in the limit as we get another function that is zero everywhere except at and has an infinite spike at but it is clearly not the same as since the area of the spike is instead of 1. This new function which results from scaling the axis using the transformation gives you a spike with an area of times the original.

A generalization of this formula is

The proof of this follows the same lines as above. We consider the case and do the integral

Now do the substitution

Then we get

Since when we get

As above when , if we get so the general formula is as given in 17.

Another formula that can cause nightmares is the derivative of the step function, that is of the function

Since the function is constant everywhere except at its derivative is zero everywhere except at . However, the step function is discontinuous at this point, and since it jumps a finite amount over a single point, it would seem that its derivative is infinite at that point. To see what’s going on, suppose we try the integral

(the limits on the integral could be any interval which includes 0). The first line uses the fact that everywhere except , and the second line is just the ordinary evaluation of an integral.

Thus satisfies both conditions of the delta function, so we can say

Note that if the step is a different size, say , so that we have

then the same analysis gives

so from the earlier example, we get

Pingback: Delta-function well – bound state « Physics tutorials

Pingback: Delta-function well – scattering « Physics tutorials

Pingback: Electric potential « Physics tutorials

Pingback: Electric potential « Physics tutorials

Pingback: Dirac delta function in three dimensions « Physics tutorials

Pingback: Dirac delta function – simple examples « Physics tutorials

Pingback: Delta function well: bound state – uncertainty principle « Physics tutorials

Pingback: Infinite square well with triangular initial state using delta function « Physics tutorials

Pingback: Delta function potential – moving delta function « Physics tutorials

Pingback: Delta function potential – moving delta function « Physics tutorials

Pingback: Delta function – Fourier transform « Physics tutorials

Pingback: Hamiltonian matrix elements « Physics tutorials

Pingback: Momentum space representation of finite wave function « Physics tutorials

Pingback: Detecting magnetic monopoles | Physics pages

Pingback: Variational principle and the delta function well | Physics pages

Pingback: Variational principle and the delta function well | Physics pages

Pingback: Quantum dots | Physics pages

Pingback: Delta function in time perturbation | Physics pages

Pingback: Functionals and functional derivatives | Physics pages

Pingback: Occupation number representation; delta function as a series | Physics pages

Pingback: Infinite square well with variable delta function barrier: ground state energy | Physics pages

Pingback: Tunnelling through a potential barrier with the radiation reaction force | Physics pages

Pingback: Delta function: a couple of alternative derivations | Physics pages

Pingback: Lorentz invariance in Klein-Gordon momentum states | Physics pages

Pingback: Derivatives of the delta function | Physics pages

Pingback: Green’s functions; forced harmonic oscillator | Physics pages

Pingback: Green’s function for Klein-Gordon equation | Physics pages

Pingback: Continuity of the wave function – Born’s conditions revisited | Physics pages

Pingback: Non-denumerable basis: position and momentum states | Physics pages