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Section 5.2, Exercise 5.2.3.
If the potential function in the Schrödinger equation goes to infinity at

infinite distance (as is the case in the infinite square well and the harmonic
oscillator), then the only allowed energies of a particle in such a system are
discrete, quantized energy states. A particle moving in such a potential can
exist only in a bound state, where the probability of finding the particle tends
to zero beyond some finite distance. In the infinite square well, the particle
is bounded by the infinitely high walls, and the probability of finding it
outside these walls is rigorously zero. In the harmonic oscillator, where the
potential tends to infinity gradually, the particle can exist at greater distances
if its energy is higher (just as in classical physics, a mass with higher energy
will have a larger range of oscillation on a spring), but for any given energy
state, the probability of finding the particle in any region where the potential
is greater than the energy drops rapidly to zero.

Such potentials offer insurmountable barriers to the particle, so the no-
tions of scattering from, or transmission through a region do not arise (in
a scattering experiment, the particle is assumed to travel in from infinity in
one direction and scatter back to infinity in the opposite direction; with an
infinite potential, this is not possible). The only way we can talk about scat-
tering or transmission of particles is to deal with cases where the particle
has the possibility of travelling arbitrarily far. In such cases, infinitely high
barriers cannot appear.

Unfortunately, the mathematics for such cases tends to get a bit more
complicated than in those cases with infinite barriers (and as we’ve seen
in the case of the harmonic oscillator, the mathematics is adquately hard
even there!). One case that is often analyzed as an introduction to scattering
and transmission is that of the delta-function well. The Dirac delta-function
δ(x) is a mathematical curiosity in that it is zero everywhere except at x= 0,
is infinite at that one point, and has an integral equal to 1 provided that the
interval of integration includes the point x = 0 (the integral is zero other-
wise).
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Clearly the delta-function doesn’t describe any real physical situation,
since no known potential function is a delta-function. However, the function
does have its uses as an approximation in many areas of physics, notably
electrodynamics (where in fact the representation of an electron as a point
charge just might actually be realistic - electrons have what appears to be
zero size, or something very close to it). The delta-function does allow
one of the simpler analyses of scattering and transmission, however, so it’s
useful to have a look at it before tackling more realistic cases.

The potential we’ll consider is

V (x) =−αδ(x) (1)

where α is a positive constant, so this represents a potential well of infinite
depth at the origin, but with infinitestimally small width. Note that, from
the properties of the delta-function, this is the same as writing

V (x) =−δ(x/α) (2)

Since δ(x) is infinite at x = 0, no matter what the value of α, α does
not measure the depth of the well; rather it might be thought of more as
measuring the ’strength’ of the potential in some sense. As we’ll see, α
does turn up in the energy levels and in the probabilities of scattering and
transmission, so it’s not an irrelevant parameter.

Since δ(x) = 0 everywhere except x = 0, the Schrödinger equation at
these points reduces to

− h̄2

2m
d2ψ

dx2 = Eψ (3)

We’ll consider bound states here and leave the scattering states to another
post. For bound states, the energy E has to be negative, since it has to be
less than the potential on either side of the (infinitesimally narrow) well,
which has its top at V (x) = 0. So we can rewrite this as

d2ψ

dx2 = κ2ψ (4)

where

κ≡
√
−2mE
h̄

(5)

Since E is negative, κ is real and can be assumed positive.
Now we have to be careful here. The general solution of 4 is quite simple:
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ψ(x) = Ae−κx+Beκx (6)

as can be checked by direct substitution. The constants A and B, one might
think, can be determined by some boundary conditions or by normalization.
But we have in fact two distinct regions in which we have to find the solu-
tion: x < 0 and x > 0 (we’ll get to what happens at x = 0 in a moment).
Clearly if we want the solution to be normalizable, we can’t use the same
solution in both regions, since for x < 0, the Ae−κx term tends to infinity
for large negative x, and for x > 0, the other term Beκx tends to infinity for
large positive x. So we need a separate solution in each area. If we take 6 as
the solution for x < 0, then we can propose another function with different
constants as the solution for x > 0:

ψ−(x) = Ae−κx+Beκx (7)
ψ+(x) = Ce−κx+Deκx (8)

We can dispose of two of the constants immediately by requiring the
wave functions tend to zero at infinity. This gives us A = 0 and D = 0, so
we have

ψ−(x) = Beκx (9)
ψ+(x) = Ce−κx (10)

Somehow we have to join up these functions across x= 0. We can refer to
Born’s conditions on the wave function and note that if the wave function is
continuous at x= 0, then we must have B = C, so we’re now down to

ψ−(x) = Beκx (11)
ψ+(x) = Be−κx (12)

However, since the potential is infinite at x = 0, we can’t require that the
derivative of the wave function be continuous.

So what can we say about B? The trick here is to try integrating the
Schrödinger equation across the boundary. Putting the delta-function po-
tential into the Schrödinger equation we get

− h̄2

2m
d2ψ

dx2 −αδ(x)ψ = Eψ (13)

Now if we integrate this equation term by term across the boundary, we
get, for some value of ε:
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− h̄2

2m

ˆ ε

−ε

d2ψ

dx2 dx−α
ˆ ε

−ε
δ(x)ψdx = E

ˆ ε

−ε
ψdx (14)

− h̄2

2m
dψ

dx

∣∣∣ε
−ε
−αψ(0) = E

ˆ ε

−ε
ψdx (15)

If we take the limit as ε→ 0, the integral on the right tends to zero, since it
is the integral of a continuous function over an infinitesimally small interval.
The first term on the left, however, will not be zero, since derivative of the
wave function is not continuous when the potential is infinite. However, it
does give us a relation which ends up determining the bound state energy.
So if we take the limit as ε→ 0, we get

− h̄2

2m

[
dψ

dx

∣∣∣
ε↓0
− dψ
dx

∣∣∣
−ε↑0

]
= αB (16)

h̄2

m
Bκ = αB (17)

κ =
mα

h̄2 (18)

E = − h̄
2κ2

2m
(19)

= −mα
2

2h̄2 (20)

Just as in the infinite square well, our analysis ends up giving a condition
on the energyE rather than on the constantB. B is in fact easily determined
by normalizing the wave function:

ˆ
∞

−∞

|ψ(x)|2dx = |B|2
(ˆ 0

−∞

e2κxdx+

ˆ
∞

0
e−2κxdx

)
(21)

=
1
κ
|B|2 = 1 (22)

B =
√
κ (23)

=

√
mα

h̄
(24)

Thus a delta-function well has precisely one bound state, and the energy
does depend on the parameter α: the larger α is, the lower (more negative)
the energy E is. This is why it makes sense to consider α as the strength of
the potential; it regulates how deeply bound the particle in a stationary state
is within the well.
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The wave function for the bound state looks like this (here we’ve taken
κ= 1 but it’s just the general shape of the curve that’s important):

The probability of finding the particle is maximum at x= 0 and falls off
exponentially on either side. Since the exponent is ±κx and κ =mα/h̄2,
the rate of exponential fall-off depends on the strength of the delta-function.
This behaviour is consistent with other bound states. The infinite square
well is essentially a well with infinite strength, so the fall off at the bound-
aries is absolute - there is no exponential decay. With the harmonic os-
cillator, the wave function oscillates (in space) within the well (although
mathematically, the oscillation is due to Legendre polynomials rather than
trigonometric functions), but in the regions where the potential is greater
than the energy, there is again an exponential decay. In the case of a delta
function, since the well itself is infinitesimally narrow, there is no region
where the wave nature of the particle is displayed - the exponential fall-off
starts immediately either side of the well.
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