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The spectral theorem guarantees that any normal operator can be unitar-

ily diagonalized. For commuting hermitian operators we can go one step
further and show that a set of such operators can be simultaneously diago-
nalized with a single unitary transformation. The proof is a bit lengthy and
is spelled out in full both in Zwiebach’s notes (chapter 6) and in Shankar’s
book (chapter 1, theorem 13) so I won’t reproduce it in full here. To sum-
marize the main points:

We can start by considering two operators Ω and Λ and assume that at
least one of them, say Ω, is nondegenerate, that is, for each eigenvalue
there is only one eigenvector (up to multiplication by a scalar). Then for
one eigenvalue ωi of Ω we have

Ω |ωi〉= ωi |ωi〉 (1)

We also have

ΛΩ |ωi〉= ωiΛ |ωi〉 (2)

so that, provided [Λ,Ω] = 0, Λ |ωi〉 is also an eigenvector of Ω for eigen-
value ωi. However, since Ω is nondegenerate, Λ |ωi〉 must be a multiple of
|ωi〉 so that, we have

Λ |ωi〉= λi |ωi〉 (3)

so that |ωi〉 is an eigenvector of Λ for eigenvalue λi. Therefore a unitary
transformation that diagonalizes Ω will also diagonalize Λ. Note that in this
case we didn’t need to assume that Λ is nondegenerate.

If both Ω and Λ are degenerate, things are a bit more complicated, but
the basic idea is this. Suppose we find a basis that diagonalizes Ω and
arrange the basis vectors within the unitary matrix U in an order that groups
all equal eigenvalues together, so that all the eigenvectors corresponding to
eigenvalue ω1 occur first, followed by all the eigenvectors corresponding to
eigenvalue ω2 and so on, up to eigenvalue ωm where m< n is the number
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of distinct eigenvalues (which is less than the dimension n of the matrix Ω

because Ω is degenerate).
Each subset of eigenvectors corresponding to a single eigenvalue forms

a subspace, and we can show that the other matrix Λ, operating on a vec-
tor from that subspace transforms the vector to another vector that also lies
within the same subspace. Now, any linearly independent selection of ba-
sis vectors within the subspace will still diagonalize Ω for that eigenvalue,
so we can select such a set of basis vectors within that subspace that also
diagonalizes Λ within that subspace. The process can be repeated for each
eigenvalue of Ω resulting in a set of basis vectors that diagonalizes both
matrices.

Obviously, I’ve left out the technical details of just how this is done, but
you can refer to either Zwiebach’s notes or Shankar’s book for the details.

As an example, consider the two matrices

Ω =

 1 0 1
0 0 0
1 0 1

 (4)

Λ =

 2 1 1
1 0 −1
1 −1 2

 (5)

We can verify that they commute:

ΩΛ = ΛΩ =

 3 0 3
0 0 0
3 0 3

 (6)

We can find the eigenvalues and eigenvectors of Ω and Λ in the usual
way. For Ω we have

det(Ω−ωI) = 0 (7)

(1−ω) [(−ω (1−ω))]+ω = 0 (8)

ω
(
2ω−ω2)= 0 (9)

ω = 0,0,2 (10)

Solving the eigenvector equation, we get, for ω = 0
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(Ω−ωI)

 a
b
c

=

 0
0
0

 (11)

 1 0 1
0 0 0
1 0 1

 a
b
c

=

 0
0
0

 (12)

a=−c (13)
b= anything (14)

Thus 2 orthonormal eigenvectors are

|01〉=
1√
2

 1
0
−1

 (15)

|02〉=

 0
1
0

 (16)

For ω = 2:  −1 0 1
0 −2 0
1 0 −1

 a
b
c

=

 0
0
0

 (17)

a= c (18)
b= 0 (19)

|2〉= 1√
2

 1
0
1

 (20)

For Λ, we can go through the same procedure to find

det(Λ−λI) = 0 (21)

−λ(2−λ)2 +λ−2+λ−2−2+λ= 0 (22)

(λ−2) [λ(2−λ)+3] = 0 (23)
λ=−1,2,3 (24)

We could calculate the eigenvectors from scratch, but from the simulta-
neous diagonalization theorem, we know that the eigenvector |2〉 from Ω

must be an eigenvector of Λ, and we find by direct calculation that
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Λ |2〉= 3 |2〉 (25)
so |2〉 is the eigenvector for λ= 3.
For the other two eigenvalues of Λ, we know the eigenvectors must be

linear combinations of |01〉 and |02〉 from Ω. Such a combination must
have form

a |01〉+ b |02〉=

 a
b
−a

 (26)

so we must have

Λ

 a
b
−a

=

 a+ b
2a
−a− b

= λ

 a
b
−a

 (27)

for λ=−1,2. For λ= 2, we have

a= b (28)

|λ= 2〉= 1√
3

 1
1
−1

 (29)

For λ=−1:

b=−2a (30)

|λ=−1〉= 1√
6

 1
−2
−1

 (31)

The columns of the unitary transformation matrix are therefore given by
29, 31 and 20, so we have

U =


1√
3

1√
6

1√
2

1√
3
− 2√

6
0

− 1√
3
− 1√

6
1√
2

 (32)

U† =


1√
3

1√
3
− 1√

3
1√
6
− 2√

6
− 1√

6
1√
2

0 1√
2

 (33)
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By matrix multiplication, we can verify that this transformation diago-
nalizes both Ω and Λ:

U†
ΩU =

 0 0 0
0 0 0
0 0 2

 (34)

U†
ΛU =

 2 0 0
0 −1 0
0 0 3

 (35)
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