INFINITESIMAL ROTATIONS IN CANONICAL AND NONCANonical TRANFORMATIONS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.

Here are a couple of examples of transformations of variables and their consequences with regard to conservation laws.

First, we look at the 2-d harmonic oscillator where the Hamiltonian is

$$H = \frac{1}{2m} (p_x^2 + p_y^2) + \frac{1}{2} m \omega^2 (x^2 + y^2)$$ \hspace{1cm} (1)

If we rotate the system so that both the coordinates and momenta get rotated, then

$$\bar{x} = x \cos \theta - y \sin \theta$$ \hspace{1cm} (2)

$$\bar{y} = x \sin \theta + y \cos \theta$$ \hspace{1cm} (3)

$$\bar{p}_x = p_x \cos \theta - p_y \sin \theta$$ \hspace{1cm} (4)

$$\bar{p}_y = p_x \sin \theta + p_y \cos \theta$$ \hspace{1cm} (5)

We can show by direct calculation that H is invariant under this transformation, and we can verify that this is a canonical transformation. Shankar shows in his equation 2.8.8 that the generator of this transformation is the angular momentum $\ell_z = xp_y - yp_x$.

However, if we rotate only the coordinates and not the momenta, we get the transformation:

$$\bar{x} = x \cos \theta - y \sin \theta$$ \hspace{1cm} (6)

$$\bar{y} = x \sin \theta + y \cos \theta$$ \hspace{1cm} (7)

$$\bar{p}_x = p_x$$ \hspace{1cm} (8)

$$\bar{p}_y = p_y$$ \hspace{1cm} (9)

Again, we can show by direct calculation that

$$\bar{x}^2 + \bar{y}^2 = x^2 + y^2$$ \hspace{1cm} (10)
so \(H \) is also invariant under this transformation. However, this transformation is noncanonical, as we can see by calculating one of the Poisson brackets:

\[
\{ \bar{x}, \bar{p}_x \} = \sum_i \left(\frac{\partial \bar{p}_x}{\partial q_i} \frac{\partial \bar{p}_x}{\partial p_i} - \frac{\partial \bar{p}_x}{\partial p_i} \frac{\partial \bar{p}_x}{\partial q_i} \right) = \cos \theta \neq 1
\]

The other mixed brackets (with a coordinate and a momentum) are also not either 0 or 1 as would be required if the transformation were to be canonical.

In order for this transformation to give rise to a conservation law, we would need to find a generator \(g \) that satisfied, for an infinitesimal rotation \(\varepsilon \):

\[
\bar{q}_i = q_i + \varepsilon \frac{\partial g}{\partial p_i} \equiv q_i + \delta q_i
\]

\[
\bar{p}_i = p_i - \varepsilon \frac{\partial g}{\partial q_i} \equiv p_i + \delta p_i
\]

For an infinitesimal rotation, the transformation becomes

\[
\begin{align*}
\bar{x} &= x - \varepsilon y \\
\bar{y} &= y + \varepsilon x \\
\bar{p}_x &= p_x \\
\bar{p}_y &= p_y
\end{align*}
\]

Therefore, the generator would have to satisfy

\[
\begin{align*}
\frac{\partial g}{\partial p_x} &= -y \\
\frac{\partial g}{\partial p_y} &= x \\
\frac{\partial g}{\partial x} &= 0 \\
\frac{\partial g}{\partial y} &= 0
\end{align*}
\]

The last two conditions state that \(g \) cannot depend on \(x \) or \(y \), but integrating the first two conditions, we get

\[
g = -yp_x + xp_y + f(x, y)
\]
where \(f \) is a function that depends only on \(x \) and/or \(y \). Thus there is no \(g \) that satisfies all four conditions, so there is no conservation law associated with a rotation of the coordinates only, even though the Hamiltonian is invariant under this transformation. Only canonical transformations that leave \(H \) invariant give rise to conservation laws.

As another example, suppose he have the one-dimensional system with

\[
H = \frac{1}{2} \left(p^2 + x^2 \right)
\]

and perform a rotation in phase space, that is, in the \(x - p \) plane:

\[
\begin{align*}
\bar{x} &= x \cos \theta - p \sin \theta \\
\bar{p} &= x \sin \theta + p \cos \theta
\end{align*}
\]

The Hamiltonian is invariant:

\[
\bar{p}^2 + \bar{x}^2 = x^2 \sin^2 \theta + 2xp \sin \theta \cos \theta + p^2 \cos^2 \theta + x^2 \cos^2 \theta - 2xp \sin \theta \cos \theta + p^2 \sin^2 \theta = x^2 + p^2
\]

The transformation is canonical as we can verify by calculating the Poisson bracket

\[
\{ \bar{x}, \bar{p} \} = \frac{\partial x}{\partial \bar{x}} \frac{\partial \bar{p}}{\partial p} - \frac{\partial x}{\partial \bar{p}} \frac{\partial \bar{p}}{\partial \bar{x}} = \cos^2 \theta - (- \sin^2 \theta) = 1
\]

An infinitesimal rotation gives the transformation

\[
\begin{align*}
\bar{x} &= x - \varepsilon p \\
\bar{p} &= p + \varepsilon x
\end{align*}
\]

To find the generator, we need to solve [13] and [14]

\[
\begin{align*}
\frac{\partial g}{\partial \bar{p}} &= -p \\
\frac{\partial g}{\partial \bar{x}} &= -x
\end{align*}
\]

These can be integrated to give
\[g(x,p) = -\frac{1}{2} (p^2 + x^2) + C \] (37)

where \(C \) is a constant of integration. Thus the quantity that is conserved is (apart from the minus sign, which we could eliminate by rotating through \(-\theta\) instead of \(\theta\)) just the original Hamiltonian, or total energy.

PINGBACKS

Pingback: Hamilton’s equations of motion under a regular canonical transformation