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The propagator for the free particle is

U (t) =

ˆ
∞

−∞

e−ip
2t/2mh̄ |p〉〈p|dp (1)

We can find its matrix elements in position space by using the position
space form of the momentum

〈x |p〉= 1√
2πh̄

eipx/h̄ (2)

Taking the matrix element of 1 we have

U
(
x,t;x′

)
=
〈
x |U (t)|x′

〉
(3)

=

ˆ
〈x |p〉

〈
p
∣∣x′ 〉e−ip2t/2mh̄dp (4)

=
1

2πh̄

ˆ
eip(x−x

′)/h̄e−ip
2t/2mh̄dp (5)

=

√
m

2πh̄it
eim(x−x′)2/2h̄t (6)

The final integral can be done by combining the exponents in the third
line, completing the square and using the standard formula for Gaussian
integrals. We won’t go through that here, as our main goal is to explore the
evolution of an initial wave packet using the propagator. Given 6, we can
in principle find the wave function for all future times given an initial wave
function, by using the propagator:

ψ (x,t) =

ˆ
U
(
x,t;x′

)
ψ
(
x′,0

)
dx′ (7)

Here, we’re assuming that the initial time is t = 0. Shankar uses the
standard example where the initial wave packet is a Gaussian:
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ψ
(
x′,0

)
= eip0x

′/h̄ e
−x′2/2∆2

(π∆2)
1/4

(8)

This is a wave packet distributed symmetrically about the origin, so that
〈X〉 = 0, and with mean momentum given by 〈P 〉 = p0. By plugging this
and 6 into 7, we can work out the time-dependent version of the wave
packet, which Shankar gives as

ψ (x,t)=

[√
π

(
∆+

ih̄t

m∆

)]−1/2

exp

[
−(x−p0t/m)2

2∆2 (1+ ih̄t/m∆2)

]
exp
[
ip0

h̄

(
x− p0t

2m

)]
(9)

Again, we won’t go through the derivation of this result as it involves
a messy calculation with Gaussian integrals again. The main problem we
want to solve here is to use our alternative form of the propagator in terms
of the Hamiltonian:

U (t) = e−iHt/h̄ (10)
For the free particle

H =− h̄2

2m
d2

dx2 (11)

so if we expand U (t) as a power series, we have

U (t) =
∞

∑
s=0

1
s!

(
ih̄t

2m

)s d2s

dx2s (12)

To see how we can use this form to generate the time-dependent wave
function, we’ll consider a special case of 8 with p0 = 0 and ∆ = 1, so that

ψ0 (x) =
e−x

2/2

π1/4
(13)

=
1
π1/4

∞

∑
n=0

(−1)nx2n

2nn!
(14)

We therefore need to apply one power series 12 to the other 14. This is
best done by examining a few specific terms and then generalizing to the
main result. To save writing, we’ll work with the following

α ≡ ih̄t

m
(15)

ψπ (x) ≡ π1/4ψ0 (x) (16)
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The s = 0 term in 12 is just 1, so we’ll look at the s = 1 term and apply
it to 14:

α

2
d2

dx2

[
∞

∑
n=0

(−1)nx2n

2nn!

]
=
α

2

∞

∑
n=1

(−1)n (2n)(2n−1)x2n−2

2nn!
(17)

=
α

2

∞

∑
n=1

(−1)n (2n)!x2n−2

2nn!(2n−2)!
(18)

We can simplify this by using an identity involving factorials:

(2n)!
n!

=
(2n)(2n−1)(2n−2)(2n−3) . . .(2)(1)

n(n−1)(n−2) . . .(2)(1)
(19)

=
2n [n(n−1)(n−2) . . .(2)(1)] [(2n−1)(2n−3) . . .(3)(1)]

n!
(20)

=
2nn!(2n−1)!!

n!
(21)

= 2n (2n−1)!! (22)

The ’double factorial’ notation is defined as

(2n−1)!!≡ (2n−1)(2n−3) . . .(3)(1) (23)
That is, it’s the product of every other term from n down to 1. Using this

result, we can write 18 as

α

2

∞

∑
n=1

(−1)n (2n)!x2n−2

2nn!(2n−2)!
= α

∞

∑
n=1

(−1)n (2n−1)!!x2n−2

2(2n−2)!
(24)

Now look at the s= 2 term from 12.

1
2!
α2

22
d4

dx4

[
∞

∑
n=0

(−1)nx2n

2nn!

]
=

1
2!
α2

22

∞

∑
n=2

(−1)n (2n)(2n−1)(2n−2)(2n−3)x2n−4

2nn!
(25)

=
1
2!
α2

22

∞

∑
n=2

(−1)n (2n)!x2n−4

2nn!(2n−4)!
(26)

=
α2

222!

∞

∑
n=2

(−1)n (2n−1)!!x2n−4

(2n−4)!
(27)

We can see the pattern for the general term for arbitrary s from 12 (we
could prove it by induction, but hopefully the pattern is fairly obvious):
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1
s!
αs

2s
d2s

dx2s

[
∞

∑
n=0

(−1)nx2n

2nn!

]
=

1
s!
αs

2s
∞

∑
n=s

(−1)n (2n)!x2n−2s

2nn!(2n−2s)!
(28)

=
αs

2ss!

∞

∑
n=s

(−1)n (2n−1)!!x2n−2s

(2n−2s)!
(29)

Now we can collect terms for each power of x. The constant term (for
x0) is the first term from each series for each value of s, so we have, using
the general term 29 and taking the first term where n= s:

∞

∑
s=0

(−1)sαs (2s−1)!!
2ss!

= 1− α
2
+
α2

2!
3
2

1
2
− α

3

3!
5
2

3
2

1
2
+ . . . (30)

[The (2s−1)!! factor is 1 when s= 0 as we can see from the result 22.]
The series on the RHS is the Taylor expansion of (1+α)−1/2, as can be
verified using tables.

In general, to get the coefficient of x2r (only even powers of x occur in
the series), we take the term where n= s+ r from 29 and sum over s. This
gives

∞

∑
s=0

αs

2ss!
(−1)s+r (2s+2r−1)!!

(2r)!
=

(−1)r

2rr!

∞

∑
s=0

αs

2ss!
(−1)s (2s+2r−1)!!

(2r−1)!!
(31)

where we used 22 to get the RHS. Expanding the sum gives

∞

∑
s=0

αs

2ss!
(−1)s (2s+2r−1)!!

(2r−1)!!
= 1−α2r+1

2
+
α2

2!

(
2r+3

2

)(
2r+1

2

)
− . . .

(32)

= 1−α
(
r+

1
2

)
+
α2

2!

(
r+

3
2

)(
r+

1
2

)
− . . .

(33)

= (1+α)−r−
1
2 (34)

where again we’ve used a standard series from tables (given by Shankar
in the problem) to get the last line. Combining this with 31, we see that the
coefficient of x2r is

(−1)r

2rr!
(1+α)−r−

1
2 (35)

Thus the time-dependent wave function can be written as a single series
as:
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ψ (x,t) = U (t)ψ (x,0) (36)

= e−iHt/h̄ψ (x,0) (37)

=
1
π1/4

∞

∑
r=0

(−1)r

2rr!
(1+α)−r−

1
2 x2r (38)

=
1

π1/4
√

1+α

∞

∑
r=0

(−1)r

2r (1+α)r r!
x2r (39)

=
1

π1/4
√

1+α
exp
[
−x2

2(1+α)

]
(40)

=
1

π1/4
√

1+ ih̄t/m
exp
[

−x2

2(1+ ih̄t/m)

]
(41)

This agrees with 9 when p0 = 0 and ∆ = 1, though it does take a fair bit
of work!


