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Chapter 9, Exercises 9.4.1 - 9.4.2.
Here we’ll look at a couple of calculations relevant to the application of

the uncertainty principle to the hydrogen atom. When calculating uncertain-
ties, we need to find the average values of various quantities. First, we’ll
look at an average in the case of the harmonic oscillator.

The harmonic oscillator eigenstates are
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where Hn is the nth Hermite polynomial. For n= 1, we have
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For this state, we can calculate the average

〈
1
X2

〉
=

ˆ
∞

−∞

ψ2
1(x)

1
x2dx (4)

=
2√
π

(mω
h̄

)3/2
ˆ

∞

−∞

e−mωx
2/h̄dx (5)

=
2√
π

(mω
h̄

)3/2
√

πh̄

mω
(6)

=
2mω
h̄

(7)

where we evaluated the Gaussian integral in the second line.
We can compare this to 1/

〈
X2〉 as follows:
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Thus
〈
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and 1
〈X2〉 have the same order of magnitude, although they

are not equal.
In three dimensions, we consider the ground state of hydrogen
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where a0 is the Bohr radius
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h̄2

me2 (14)

with m and e being the mass and charge of the electron. The wave func-
tion is normalized as we can see by doing the integral (in 3 dimensions):
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We can use the formula (given in Shankar’s Appendix 2)
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as required.
For a spherically symmetric wave function centred at r = 0,

(∆X)2 =
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with identical relations for Y and Z. Since
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Thus both
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and 1

〈r〉 are of the same order of magnitude as 1/a0 =

me2/h̄2.
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