TRANSLATION OPERATOR FROM PASSIVE **TRANSFORMATIONS**

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog. Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press. Chapter 11.

We've seen that the translation operator $T(\varepsilon)$ in quantum mechanics can be derived by considering the translation to be an active transformation, that is, a transformation where the state vectors, rather than the operators, get transformed according to

$$(0.1) T(\varepsilon) |\psi\rangle = |\psi_{\varepsilon}\rangle$$

Using this approach, we found that

(0.2)
$$T(\varepsilon) = I - \frac{i\varepsilon}{\hbar} P$$

so that the momentum P is the generator of the transformation.

We can also derive T using a passive transformation, where the state vectors remain the same but the operators are transformed according to

$$(0.3) T^{\dagger}(\varepsilon)XT(\varepsilon) = X + \varepsilon I$$

$$(0.4) T^{\dagger}(\varepsilon)PT(\varepsilon) = P$$

This is equivalent to an active transformation since

(0.5)
$$\left\langle \psi \left| T^{\dagger}(\varepsilon) X T(\varepsilon) \right| \psi \right\rangle = \left\langle T(\varepsilon) \psi | X | T(\varepsilon) \psi \right\rangle$$

(0.6) $= \left\langle \psi_{\varepsilon} | X | \psi_{\varepsilon} \right\rangle$

$$(0.6) = \langle \psi_{\varepsilon} | X | \psi_{\varepsilon} \rangle$$

$$(0.7) = x + \varepsilon$$

As before we start by taking

(0.8)
$$T(\varepsilon) = I - \frac{i\varepsilon}{\hbar}G$$

where G is some Hermitian operator, so that $G^{\dagger} = G$. Plugging this into 0.3 we get, keeping only terms up to order ε :

(0.9)
$$T^{\dagger}(\varepsilon)XT(\varepsilon) = \left(I + \frac{i\varepsilon}{\hbar}G\right)X\left(I - \frac{i\varepsilon}{\hbar}G\right)$$

$$(0.10) = X + \frac{i\varepsilon}{\hbar}I(GX - XG)$$

$$(0.11) = X - \frac{i\varepsilon}{\hbar} [X, G]$$

$$(0.12) = X + \varepsilon I$$

Therefore

$$(0.13) -\frac{i\varepsilon}{\hbar}[X,G] = \varepsilon I$$

$$[X,G] = i\hbar I$$

Since $[X,P] = i\hbar$ we see that

$$(0.15) G = P + f(X)$$

The extra f(X) is there because any function of X alone commutes with X, so

$$[X,G] = [X,P] + [X,f(X)] = i\hbar I + 0$$

We can eliminate f(X) by considering 0.4.

(0.17)
$$T^{\dagger}(\varepsilon)PT(\varepsilon) = \left(I + \frac{i\varepsilon}{\hbar}G\right)P\left(I - \frac{i\varepsilon}{\hbar}G\right)$$

$$(0.18) = P + \frac{i\varepsilon}{\hbar}I(GP - PG)$$

$$(0.19) = P - \frac{i\varepsilon}{\hbar} [P, G]$$

$$(0.20) = P$$

Thus we must have [P,G] = 0, which means that G must be a function of P alone. This means that the most general form for f(X) is f(X) = constant, but there's nothing to be gained by adding some non-zero constant to G, so we can take f(X) = 0. Thus we end up with the same form 0.2 that we got from the active transformation.

Translational invariance is the condition that the Hamiltonian is unaltered by a translation. In the passive representation this is stated by the condition

(0.21)
$$T^{\dagger}(\varepsilon)HT(\varepsilon) = H$$

Since translation is unitary, we can apply a theorem that is valid for any operator Ω which can be expanded in powers of X and P. For any unitary operator U, we have

(0.22)
$$U^{\dagger}\Omega(X,P)U = \Omega\left(U^{\dagger}XU, U^{\dagger}PU\right)$$

This follows because for a unitary operator $U^{\dagger}U=UU^{\dagger}=I$ so we can insert the product UU^{\dagger} anywhere we like. In particular, we can insert it between each pair of factors in every term of the power series expansion of Ω , for example

$$(0.23) U^{\dagger} X^2 P^2 U = U^{\dagger} X X P P U$$

$$(0.24) = U^{\dagger} X U U^{\dagger} X U U^{\dagger} P U U^{\dagger} P U$$

$$= \left(U^{\dagger} X U\right)^2 \left(U^{\dagger} P U\right)^2$$

For 0.21 this means that

(0.26)
$$T^{\dagger}(\varepsilon)H(X,P)T(\varepsilon) = H(X + \varepsilon I, P) = H(X, P)$$

As before, this leads to the condition

$$[P,H] = 0$$

which means that *P* is conserved, according to Ehrenfest's theorem.

PINGBACKS

Pingback: Translational invariance and conservation of momentum

Pingback: Finite transformations: correspondence between classical and quantum

Pingback: Parity transformations

Pingback: Rotational transformations using passive transformations