HARMONIC OSCILLATOR: HERMITE POLYNOMIALS AND ORTHOGONALITY OF EIGENFUNCTIONS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Section 7.3, Exercises 7.3.2 - 7.3.3.
Post date: 17 Jan 2017

The eigenfunctions of the harmonic oscillator are given by

\[\psi_n(x) = \left(\frac{m\omega}{\pi \hbar} \right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n \left(\sqrt{\frac{m\omega}{\hbar}} x \right) e^{-m\omega x^2/2\hbar} \]

(1)

where \(H_n(u) \) is a Hermite polynomial. The Hermite polynomials obey the recursion relation

\[H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x) \]

(2)

The first few Hermite polynomials are given in Shankar’s equation 7.3.21, and we may use these to verify this relation for a couple of cases. Taking \(n = 2 \) we have

\[H_3(x) = 2xH_2(x) - 4H_1(x) \]

\[= 2x \left[-2 (1 - 2x^2) \right] - 4(2x) \]

\[= -12x + 8x^3 \]

(3)

(4)

(5)

The last line agrees with \(H_3 \) as given in Shankar.

For \(n = 3 \) we have

\[H_4(x) = 2xH_3(x) - 6H_2(x) \]

\[= 2x \left[-12x + 8x^3 \right] - 6 \left[-2 (1 - 2x^2) \right] \]

\[= 12 - 48x^2 + 16y^4 \]

(6)

(7)

(8)

which again agrees with Shankar’s equation.

When deriving the solution in terms of Hermite polynomials, we followed Griffiths and found that we could write the polynomials in the form

\[H_n(y) = \sum_{j=0}^{n} a_j y^j \]

(9)
where the coefficients \(a_j \) obey the recursion relation
\[
a_{j+2} = \frac{2j + 1 - \varepsilon}{(j + 1)(j + 2)} a_j
\]
(10)

The \(\varepsilon \) used by Griffiths is equivalent to \(2\varepsilon \) in Shankar, so using Shankar’s notation, we see that this recursion relation is the same as Shankar’s equation 7.3.15:
\[
C_{n+2} = C_n \frac{2n + 1 - 2\varepsilon}{(n + 1)(n + 2)}
\]
(11)

Here, we have
\[
\varepsilon = \frac{E}{\hbar \omega}
\]
(12)

where \(E \) is the energy of the oscillator state.

Looking at the polynomials in Shankar’s equation 7.3.21, we have
\[
H_3(y) = -12 \left(y - \frac{2}{3} y^3 \right)
\]
(13)

so
\[
C_1 = -12
\]
(14)
\[
C_3 = 8
\]
(15)

With \(n = 1 \), we get from (11)
\[
C_3 = -12 \frac{3 - 2\varepsilon}{6}
\]
(16)

However, for this state, \(E = \left(3 + \frac{1}{2}\right) \hbar \omega \) so \(2\varepsilon = 7 \) and \(C_3 = 8 \) as required.

For \(H_4 \) we have
\[
H_4(y) = 12 \left(1 - 4y^2 + \frac{4}{3} y^4 \right)
\]
(17)

This means
\[
C_0 = 12
\]
(18)
\[
C_2 = -48
\]
(19)
\[
C_4 = 16
\]
(20)

Here \(E = \left(4 + \frac{1}{2}\right) \hbar \omega \), so \(2\varepsilon = 9 \) and
\[C_2 = 12 \left(\frac{-8}{2} \right) = -48 \quad (21) \]
\[C_4 = -48 \cdot \frac{5 - 9}{12} = 16 \quad (22) \]

We can see from the relation 2 that, given that \(H_0 = 1 \) and \(H_1 = 2x \), all Hermite polynomials of even index contain only even powers of \(x \), and all polynomials of odd index contain only odd powers of \(x \). This means that all even Hermite polynomials are even functions of \(x \), in the sense that \(H_{2n}(-x) = H_{2n}(x) \), and all odd Hermite polynomials are odd functions of \(x \), so that \(H_{2n+1}(-x) = -H_{2n+1}(x) \).

If \(\psi(x) \) is even and \(\phi(x) \) is odd, then
\[\psi(-x) \phi(-x) = -\psi(x) \phi(x) \quad (23) \]
That is, the product \(\psi(x) \phi(x) \) is an odd function. Since the integral of any odd function over an interval symmetric about \(x = 0 \) is zero, we have
\[\int_{-\infty}^{\infty} \psi(x) \phi(x) \, dx = 0 \quad (24) \]

Looking at the eigenfunctions \([1] \) we see that the exponential factor is a Gaussian centred at \(x = 0 \) and is therefore even, so that \(\psi_n \) will be even or odd depending on whether \(n \) is even or odd. In particular, the integral of any even \(\psi_n \) multiplied by any odd \(\psi_n \) over all \(x \) will be zero.

To show that pairs of even functions are also orthogonal is a bit trickier, but we can do it in the simplest case, where we consider the functions \(\psi_0 \) and \(\psi_2 \).

\[\int_{-\infty}^{\infty} \psi_0(x) \psi_2(x) \, dx = \sqrt{\frac{m \omega}{\pi \hbar}} \frac{1}{\sqrt{8}} \int_{-\infty}^{\infty} H_0 \left(\sqrt{\frac{m \omega}{\hbar}} x \right) H_2 \left(\sqrt{\frac{m \omega}{\hbar}} x \right) e^{-m \omega x^2/\hbar} \, dx \]
\[= \sqrt{\frac{m \omega}{\pi \hbar}} \frac{1}{\sqrt{8}} \int_{-\infty}^{\infty} (1 - 2 \left(1 - 2 \frac{m \omega}{\hbar} x^2 \right)) e^{-m \omega x^2/\hbar} \, dx \]
\[= -\sqrt{\frac{m \omega}{\pi \hbar}} \frac{1}{\sqrt{2}} \left[\sqrt{\frac{\pi \hbar}{m \omega}} - \sqrt{\frac{\pi \hbar}{m \omega}} \right] \]
\[= 0 \quad (28) \]

The two Gaussian integrals can be done using standard formulas as given in Shankar’s Appendix A.2. (I used Maple.)
Pingbacks

Pingback: Harmonic oscillator - mean position and momentum