HARMONIC OSCILLATOR - RAISING AND LOWERING OPERATORS AS FUNCTIONS OF TIME

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Section 7.4, Exercise 7.4.6.
Post date: 30 Jan 2017

We’ll consider here the problem of finding the averages of the raising and lowering operators (from the harmonic oscillator) as functions of time, that is, we want to find \(\langle a(t) \rangle \) and \(\langle a^\dagger(t) \rangle \). At first glance we might think they are both zero, since they are defined in terms of position and momentum as

\[
a^\dagger = \frac{1}{\sqrt{2\hbar m\omega}} [-iP + m\omega X] \quad (1)
\]
\[
a = \frac{1}{\sqrt{2\hbar m\omega}} [iP + m\omega X] \quad (2)
\]

and the averages of \(P \) and \(X \) in any of the energy eigenstates of the harmonic oscillator are all zero. However, suppose we have a mixed state \(|\psi\rangle \) which can be written as a sum over the eigenstates as

\[
|\psi(t)\rangle = \sum_{n=0}^{\infty} c_n e^{-iE_n t/\hbar} |n\rangle \quad (3)
\]
\[
= \sum_{n=0}^{\infty} c_n e^{-i(2n+1)\omega t/2} |n\rangle \quad (4)
\]

where in the second line we used the energies of the oscillator as

\[
E_n = \hbar \omega \left(n + \frac{1}{2} \right) \quad (5)
\]

We now have
\[\langle a(t) \rangle = \langle \psi | a | \psi \rangle = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_m^* c_n e^{i(2m+1)\omega t/2} c_n e^{-i(2n+1)\omega t/2} \langle m | a | n \rangle \] (6)

\[= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_m^* c_n e^{i(m-n)\omega t} \langle m | a | n \rangle \] (7)

We can now use the formula

\[a | n \rangle = \sqrt{n} | n - 1 \rangle \] (9)

This gives

\[\langle a(t) \rangle = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_m^* c_n e^{i(m-n)\omega t} \sqrt{n} \langle m | n - 1 \rangle \] (10)

\[= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_m^* c_n e^{i(m-n)\omega t} \sqrt{n} \delta_{m,n-1} \] (11)

\[= e^{-i\omega t} \sum_{n=0}^{\infty} c_{n-1}^* c_n \sqrt{n} \] (12)

\[= e^{-i\omega t} \langle a(0) \rangle \] (13)

Note that if \(|\psi\rangle \) is an eigenstate, then only one of the coefficients \(c_n \) is non-zero, so \(\langle a(0) \rangle = 0 \) as we’d expect.

The derivation for \(\langle a^\dagger(t) \rangle \) is similar:

\[\langle a^\dagger(t) \rangle = \langle \psi | a^\dagger | \psi \rangle \] (14)

\[= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_m^* c_n e^{i(2m+1)\omega t/2} c_n e^{-i(2n+1)\omega t/2} \langle m | a^\dagger | n \rangle \] (15)

\[= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_m^* c_n e^{i(m-n)\omega t} \langle m | a^\dagger | n \rangle \] (16)

We can now use the formula

\[a^\dagger | n \rangle = \sqrt{n+1} | n + 1 \rangle \] (17)

This gives
\[\langle a^\dagger(t) \rangle = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_m^* c_n e^{i(m-n)\omega t} \sqrt{n+1} \langle m | n+1 \rangle \]
(18)

\[= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_m^* c_n e^{i(m-n)\omega t} \sqrt{n+1} \delta_{m,n+1} \]
(19)

\[= e^{i\omega t} \sum_{n=0}^{\infty} c_{n+1}^* c_n \sqrt{n+1} \]
(20)

\[= e^{i\omega t} \langle a^\dagger (0) \rangle \]
(21)